Introduction: The Foundations of a Cybernetic Discourse: Difference between revisions

From Fabulous Loop de Loop
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
[[File:AshbyMcCullochWalterWiener.jpg]]
[[File:AshbyMcCullochWalterWiener.jpg]]


''Ashby, McCulloch, Grey Walter and Wiener, at the 1951 Paris congress on cybernetics''
<p class="caption">''Ashby, McCulloch, Grey Walter and Wiener, at the 1951 Paris congress on cybernetics''</p>





Revision as of 08:52, 19 August 2020


INTRODUCTION


“I think that cybernetics is the biggest bite out of the fruit of the Tree of Knowledge that mankind has taken in the last 2000 years. But most of such bites out of the apple have proved to be rather indigestible—usually for cybernetic reasons. Cybernetics has integrity within itself, to help us to not be seduced by it into more lunacy, but we cannot trust it to keep us from sin.”

— Gregory Bateson, From Versailles to Cybernetics (1966)

Ashby, McCulloch, Grey Walter and Wiener, at the 1951 Paris congress on cybernetics


Gregory Bateson’s collection of essays and lectures, Steps to an Ecology of Mind, (StEM) begins with a series of “metalogues”. These are dialogues between a father and his young daughter in which the father explains the principles of communication and organisation.[1] To the contemporary reader their tone is a little cutesy and more than a little patrician. However, the texts serve as an excellent introduction to the themes which dominated Bateson’s work – and which dominate The Fabulous Loop de Loop. The first metalogue is entitled “Why do things get in a muddle?” and explains the principle of entropy. The second law of thermodynamics states that organised entities will run to disorder and dissipation over time. Things get in a muddle because of entropy. The notion of entropy was central to Bateson’s thinking and his reading of it was specifically cybernetic. Cybernetics (“the science of feedback”) seemed to resolve the curious issue that however much things tend to get in a muddle, they also (in the natural world and in human society) tend toward organisation and order. Norbert Wiener, who coined the neologism “cybernetics”, adopted the term, “negentropy” (or negative entropy),2[2] to account for the way in which systems and organisms establish and retain their organisation despite the ever-present effects of entropy. Negentropy resolves the problematic issue of how, in a universe which is prone to the forces of disorganisation, systems and organisms actually stabilise, become more complex and reproduce. This figure of (negative) entropy was the unifying element in Gregory Bateson’s output from the 1940s to the 1970s, incorporating anthropology, aesthetics, psychiatry, evolution, biology and ecology. The order to be found in all these disparate fields is negentropic insofar as information cycling within a negative feedback loop establishes homeostasis and affords its adaptation. This is the case regardless of whether that system or organism is biological, psychic, social or mechanical. For Bateson a coherent wholistic world view (meta-theory), is dependent on negentropy as the central organising principle.

Norbert Wiener, in Cybernetics (1948) provided a precise relation for entropy and information, in the sense that units of information (Binary units or bits) within a message can be measured against noise (which is the measure of entropy in the message): “Organism is opposed to chaos, to disintegration, to death, as message is to noise.”[3]

In Wiener’s equation for negentropy, the second law of thermodynamics still holds, systems will always run to disorganisation, but negentropy allows for a decrease in the rate of dissipation. This is because knowledge of order is fed back through the system which allows the system to conserve order. In this sense, negentropy represents a localised reversal of time’s arrow. It is possible, stated Wiener “to interpret the information carried by a message as essentially the negative of its entropy, and the negative logarithm of its probability. That is, the more probable the message, the less information it gives. Clichés, for example are less illuminating than great poems.”[4]

Organism carries news of order back through the system. Human beings, for instance, have maintained, and even increased, the level of organisation, which, as with all negentropic systems, allows an enclave of order within a general stream of increasing chaos[5]; and, furthermore, as the father explains in the first metalogue, your muddle might be my order.[6]

If entropy framed the understanding of the central scientific and social issues of the nineteenth century – powering its steam engines, spinning its mills – organising its discourse of economies of energy; negentropy recognises the relationship between information and energy that frames the current age of communication – the discourse of ecologies of information (media ecologies). Wiener’s theory of negentropy provides a solution to a conundrum which had plagued evolutionary theory throughout the nineteenth century: how in an entropic universe could order be established and maintained and how can it increase in complexity? Wiener’s equation for negentropy accommodated biological order within a general field of physical flux because it provided the context for self-organisation and adaptation.[7]

In Steps to an Ecology of Mind, Gregory Bateson translates Wiener’s idea as follows:

“The technical term ‘information’ may be succinctly defined as any difference which makes a difference in some later event. This definition is fundamental for all analysis of cybernetic systems and organization. The definition links such analysis to the rest of science, where the causes of events are commonly not differences but forces, impacts, and the like. The link is classically exemplified by the heat engine, where available energy (i.e., negative entropy) is a function of a difference between two temperatures. In this classical instance, "information" and "negative entropy" overlap.”[8]

The world understood as a series of differences, as opposed to a series of forces, proposes a new materialism. Bateson builds his argument of the difference that makes a difference to argue the relation between negentropy and conscious purpose.

Bateson: “Wiener points out that the whole range of entropy phenomena is inevitably related to the fact of our knowing or not knowing what state the system is in. If nobody knows how the cards lie in the pack, it is to all intents and purposes a shuffled pack. Indeed, this ignorance is all that can be achieved by shuffling.” Negentropy now enters the realm of culture, as human beings contently interfere with the randomising machinations of the entropic universe. Humans systematically set out to “trick” the second law of thermodynamics – organising against the relentless forces of improbability. Bateson next argues that because choice is bound to order, in seeking information humans also seek values. Bateson describes a man who “for his breakfast,[...] achieves an arrangement of bacon and eggs, side by side, upon a plate; and in achieving this improbability he is aided by other men who will sort out the appropriate pigs in some distant market and interfere with the natural juxtaposition of hens and eggs.”[9]

Here Bateson extends the individual choice to a larger ecology of choices: man + environment. This prosaic example of a man choosing his breakfast makes the key relation between negentropy and Bateson’s ecology of mind which underlies this text. For Gregory Bateson human decision-making serves as “Maxwell’s demon”, bringing order to an entropic system.

ENTROPY AND ITS DISCONTENTS

It became apparent to many thinkers, at the turn of the nineteenth century, that the dominant model of entropy was inadequate for the innovative theories of the era. The theory of evolution and natural selection – theories of homeostasis; genetics, mathematics, semantics and theories of the human psyche – all struggled to accommodate the second law of thermodynamics.[10]

The theorisation of negentropy in the era of cybernetics required the production of new knowledge, but it also required a reordering of existing knowledge. The janus face, which sees the possibilities of the future folded into the past, is therefore central to this text. I will emphasise how the moment of the Macy conferences on cybernetics invited a re-consideration of how thinkers prior to the cybernetic moment sought to establish a new horizon of possibility.

As I follow this track, I will depart form the emphasis taken in recent analysis of the cybernetic moment. This understands the period of the Macy Conferences on Cybernetics (1945-52) as a moment when a “new universalism” was established (Bowker)[11]; it is the moment when we began to learn how we became post-human (Hayles)[12] and when the foundation of a new discourse network for the twenty-first century was established (Kittler)[13], a discourse which was established on “the ontology of the enemy” (P. Galison).[14]

I do not detract from the claims made by these writers, cybernetics has had a profound effect on contemporary culture. My own emphasis will be that the key thinkers of the new epistemology of cybernetics – Wiener, McCulloch and Bateson among them – were avid narrators of the development of their emerging science in a lineage of anti-cartesian, non-thomian thinking which was well established in the centuries before. In this sense, cyberneticians were epistemologists who by reframing the past established the stakes of a new discourse of negentropy;16 they were discourse theorists who argue the stake of past and present knowledge.

In that vein I emphasise that the discourse of experimental psychology or (neurophysiology), which had developed since the beginning of the twentieth-century, was central to the discourse of cybernetics as it developed in the 1940s. Many of the cyberneticians who worked in the war effort were also leading brain researchers before and after the war. In the case of Edward Craik, Ross Ashby and Grey Walter, the cybernetic “thinking machines” they created arose directly from their brain research.17 [15] The new technologies of scanning devices and predictive servomechanisms, which they had researched for the war effort, when added to the repertoire of brain experimentation developed in the 1920s and 30s, produced new models of behaviour and new perspectives on the relationship between machine and the organism.

The British cyberneticians Ross Ashby, Edward Craik and Grey Walter, and the American cyberneticians Lawrence Kubie and Warren McCulloch were well established in the discourse of experimental psychology, which developed clear arguments of how mind is constituted – from an “anti-cartesian”, “non-thomian” perspective (which is to say, they refused an essentialisation of “self”). The introduction of servo-machines into this established discourse allowed for the extension of experimental psychology into first-order cybernetics. The meeting of experimental psychology and war-time research produced a new formal theory of feedback and control technologies which begged fundamental questions about the nature of organism and its relation to environment.

At the heart of the cybernetic discourse of the 1940s and 1950s is the idea of machine-organism equivalence, which had also been at the heart of neurophysiological research in the preceding decades. This is the notion that a machine – to the extent that it modelled an organism, to the extent it could order its environment – could “think” “learn” and “adapt”.

Gregory Bateson plays a key role in extending this discourse still further. Bateson was born into a world where the entropic universe was passing into a new universe of information and communication. The development of his cybernetic epistemology leaves clear traces of this transition: he draws on visionary figures who intuited the new order – Samual Butler, Clark Maxwell and his father William Bateson to name a few– and reframes their work in the light of the cybernetic explanation provided by Craik, Ross Ashby, Grey Walter, McCulloch and Wiener. As much as these writers were concerned with how the world works and how mind and the human brain function, they also acknowledged the pressing need to reframe the nineteenth-century thermodynamic discourse from the new perspectives provided by cybernetics.

READING MACHINES

A recurring feature within this text will be a close reading of machines which were produced within the discourse of cybernetics. I will make a close reading of two types of machine which bare a close relation The first category of machines which I will read closely in this text are machines which express negative entropy : these include Grey Walter’s Tortoise, Norbert Wiener’s Moth-Bedbug and Ross Ashby’s Homeostat. Such machines organise information, and in their inter-spacial and inter-subjective actions, make a performative claim on the world similar to the claim made by living organisms. These machines – referred to by their creators as “toys” and “thinking machines”– can further be understood as expressions of negentropy, rather than simply illustrations or demonstrations of the principle of negentropy. In this respect they differ from the scientific models that went before them. Scrutiny of these machine, "in the metal" [16] so to speak, is in line with the experimental epistemology propounded by the subjects central to it: Ross Ashby, Craik, McCulloch, Grey Walter and Wiener, in the generation of cybernetics in the 1940s and 50s.

There is a second type of machine read closely in this text also express negentropy, but they differ insofar as they fold human subjectivity into their apparatus. These machines include, Alfred Korzybski’s Structural Differential (Anthropometre); Claude Shannon & David Hagelbarger’s SEER (SEquence Extrapolating Robot); the E-Meter (Electropsycometer) used in scientology audit; the Sony Videorover II AV-3400 (Portapak). These machines represent technologies of self through which the subject is made to adapt. All the machines in this second category require the subject to establish a relation to their environment or context, they are media for self-construction.

The difference between these category of machine is subtle but significant: If the cybernetic tortoise produces a subject (other) in relation to context, the structural differential produces a subject (self) in relation to context. Having made that distinction, both categories of machine, in their relation to their environment and in relation to their subjectivity, represent a new definition of purpose.

THE FOUNDATIONS OF A CYBERNETIC EPISTEMOLOGY: REDEFINING "PURPOSE" AND "THINKING"

The seminal paper by Arturo Rosenblueth, Norbert Wiener and Julian Bigelow entitled Behavior, Purpose and Teleology (1942)[17] sought to provide a new definition of purpose – best demonstrated by the hypothetical cybernetic devices I describe in this text. These devices, which did not ‘resemble human beings’ would nevertheless exhibit complex behaviour despite being fed little information. The simplest and most clear demonstration of this claim would be realised a few years after the publication of Behavior, Purpose and Teleology, in Gray Walter's Tortoise (1948), one of the first in a menagerie of teleological mechanisms.

The text, Behavior, Purpose and Teleology, distinguishes the behaviourist approach from a teleological approach (later to be termed cybernetics). Behaviourism has some relation to the teleological approach but the relation is limited. Behaviourism ignores the relation between the object and its surroundings (context), which is of central importance to the cyberneticians19. The teleological approach also differs from behaviourism in that it is goal-directed 20[18] Wiener et al make the distinction between purposeful machines and non-purposeful machines. “Purposeful active behaviour may be subdivided into two classes: "feed-back" (or "teleological") and "non-feed-back" (or "non-teleological")21.[19] All feedback machines require negative feedback to operate, meaning “some signals from the goal are necessary at some time to direct the behaviour” [20] We can compare the conditions of a functioning thermostat (feedback machine) with a kitchen clock (non-feedback machine). The latter may allow exterior output (to be wound up) but outside signals do not circuit through it to modify its behaviour, as is the case with a thermostat. The clock is incapable of learning and of adapting (and in this sense it is entropic, it will always need energy from the outside to wind it up). For ‘teleological mechanisms’ 23[21], cause-and-effect relations are replaced by ‘circular causality’ which requires negative feedback as a regulator (Wiener will later identify negative feedback as negentropy). The senses of the organism (touch, sight and proprioception) guide a given action through constant feedback and adjustment. ‘Circular causality’ can occur in man and machine or machine and machine, but all are goal-directed and regulated within a circuit.[22]. Many goal-directed circular-causal activities can be understood mathematically, if not through the tractable (linear) mathematics in which A causes B. Behavour is therefore understood as systemic and probabilistic.

After the publication of Wiener’s Cybernetics in 1948, the relation between information and energy became more clearly defined – order is re-enforced as information loops through the system. In this context behaviour, thinking and mind are imminent to system – mind cannot be divorced from the material circuitry in which it is produced. This has significant implications to our conception of behaviour and requires a radical reconsideration of the concept of mind. For the cybernetic group at the Macy meetings the new conception of teleology extended the realm of exact science, revising the epistemology of modern science[23], which traditionally was the study of the intrinsic way in which beings and things functioned.26[24] The teleological approach shifted the emphasis toward the interrelation of things and objects.

THINKING (MACHINES)

The cybernetic epistemology makes an abiding link between stochastic systems (systems of probability) and biological systems. This position is re-enforced by a seminal paper which defined the debate on machines and organism in the post war era. A Logical Calculus of the Ideas Immanent in Nervous Activity by Warren McCulloch and Warren Pitts (1943) argued that consciousness was synonymous with calculation.27[25] McCulloch – a neurophysiologist who graduated in both psychology and neurology[26] – wanted to relate his findings on neural nets to the symbolic logic of Russell and Whitehead’s Prinicipia Mathematica.

A logical proposition is true or false. If stimulated, a nerve cell produces an electromagnetic discharge or it does not. It is an “all or none” proposition. Neurons fire on a chain and are linked in the same way logical propositions are linked. One could, therefore, view a nerve net as operating like a machine or computer. [27] Fundamentally, the McCulloch-Pitts Model provided a theoretical frame that allowed for the equivalence between mechanical and biological systems (specifically the brain) 30[28] allowing that both should be understood as encoding and decoding systems. Which is to say, biological organisms (including the brain) and servo-mechanisms constitute local negentropic systems.

The first, simple, cybernetic creatures – Claude Shannon’s Rat, Norbert Wiener’s Moth-Bedbug, Ross Ashby’s Homeostat, Grey Walter’s Tortoise[29] – displayed all the properties explained in Behaviour, Purpose and Teleology and accorded to the McCulloch-Pitts Model: they were self-organising, self-directing, adapting and orientated with their environment. Although their behaviour was complex – and went beyond the repertoire of stimulus and response modelled in behaviourism – it could nevertheless be located within a matrix of probability. Behaviour in both animal and machine is regulated by information flows through a circuit and both might be understood as performing computational actions (stochastic- probabilistic-statistical).[30] As Norbert Wiener explained: “It is […] therefore, best to avoid all question-begging epithets such as ‘life’, ‘soul’, ‘vitalism’, and the like, and say merely in connection with machines that there is no reason why they may not resemble human beings in representing pockets of decreasing entropy in a framework in which the large entropy tends to increase.” (1988: 32) [31] The key notions briefly cited above –

(a) a new definition of purpose;

(b) a definition of negentropy and its relation to information;

(c) the arbitrary division between an organism and its environment;

(d) the extension of biological ecology into a general (social-media) ecology

– allowed Gregory Bateson to develop a coherent cybernetic epistemology. Bateson’s mature works, in Steps to an Ecology of Mind (StEM) and Mind and Nature, would be predicated on the notion of mind as co-extensive with a negentropic circuit of circular causality. Bateson found in cybernetic principles a means of giving a rigorous scientific base, and a general meta-theory, to his own earlier theoretical work.36

LOOP DE...

This text describes a loop de loop, if we return to the beginning we already see, in Samuel Butler’s Notebooks and Evolution Old and New, a description of the function of negentropy avant-cybernetics. Butler describes how the unconscious functions of the body and mind – as the organs form themselves through the course of evolution and as they function involuntarily – establish the conditions for conscious thought. Butler argues (in terms we would today recognise as cybernetic) that we recognise purpose at relatively late stage in the process, only at that point does it become conscious human purpose. Humans disallow the “habits” of this biological formation and fail to recognise the continuity between matter and mind, seeking instead to divide mind from the process from which it emerges. Butler’s materialist conception of the continuity of mind was extended into the twentieth century by the thinkers discussed in this text – including Wiener, Korzybski, Craik, McCulloch and Bateson, through whom we see an increasingly precise articulation.


[32]

  1. Bateson, Gregory, StEM. They are identified within the metalogues as Gregory and Mary Catherine Bateson
  2. Norbert Wiener Cybernetics (1948
  3. Wiener in Harries-Jones EU&GB 108
  4. Wiener HUoHB De Capo 1954 edition
  5. Norbert Wiener Human use of Human Beings 1950
  6. StEM, Why do things get in a muddle?
  7. Harries-Jones EU&GB 108
  8. Bateson StEM
  9. Bateson StEM
  10. Bernard, C. (1974) Lectures on the phenomena common to animals and plants. Trans Hoff HE, Guillemin R, Guillemin L, Springfield (IL): Charles C Thomas
  11. Geof Bowker, How to be Universal: Some Cybernetic Strategies 1943-70 (1993
  12. N. K. Hayles, How We became Post Human; N. K. Hayles, My Mother Was a Computer
  13. F. Kittler, Discourse Networks 1800 /1900 (1990)
  14. P.Galison The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision Critical Inquiry, Vol. 21, No. 1 (Autumn, 1994), pp. 228-266 University of Chicago Press(1994)
  15. A. Pickering The Mangle of Practice and The Cybernetic Brain
  16. Wiener's preferred term
  17. Arturo Rosenblueth, Norbert Wiener and Julian Bigelow, "Behavior, Purpose and Teleology," Philosophy of Science 10 (January 1943)
  18. Heims the Cybernetic Group, 15
  19. Arturo Rosenblueth, Norbert Wiener and Julian Bigelow, "Behavior, Purpose and Teleology," Philosophy of Science 10 (January 1943) p.19
  20. Arturo Rosenblueth, Norbert Wiener and Julian Bigelow, "Behavior, Purpose and Teleology," Philosophy of Science 10 (January 1943) p.19
  21. Arturo Rosenblueth, Norbert Wiener and Julian Bigelow, "Behavior, Purpose and Teleology," Philosophy of Science 10 p. 15
  22. S. Heims the Cybernetic Group, 16
  23. S Heims CG 16 and 32
  24. S.Heims CG P?
  25. R. Barbrook Imaginary Futures, 57
  26. McCulloch had studied brain activity through research on chimpanzees and monkeys, mapping the functional pathways in the cerebral cortex by administering electric shocks or strychnine to particular areas of the animals’ brains. See:Steve Joshua Heims, Constructing a Social Science for America: The Cybernetics Group, 1 946- 1 953 (Cambridge, MA: MIT Press, 1991)
  27. Heims CG 32
  28. N. K. Hayles, New Media Reader, 145-148
  29. A. Pickering The Cybernetic Brain
  30. Note: McCulloch & Pitts saw the application of these principles to modelling the mind and brain, and to extending toward the development of a computer with consciousness. For Von Neumann this was a quantitive issue rather than a qualitative one –in time the number of switches in a machine would match the number neurons in a human brain. This was also the emphasis of psychiatrists attending the Macy conferences on Cybernetics, including Ross Ashby and Grey Walter. Bateson sought a more universal application of cybernetic ideas which could be applied to a variety of systems; biological, behavioural and the social sciences.
  31. Wiener, in Lafontaine, Matrix of French Theory, 32
  32. Note: This text has three parts: The first part PREFIGURING A CYBERNETIC EPISTEMOLOGY will examine instances in which thinkers in the nineteenth century and at the turn of the twentieth century recognised the necessity to think beyond the limitations of entropy. The second part THE SOCIAL MATRIX AND THE DE-CENTERED SELF is concerned with how thinkers came to terms with the implications of negative entropy in the cybernetic era and how these new insights necessitated a re-organisation of knowledge across a diverse field. The third part THE FABULOUS LOOP DE LOOP considers how the negentropic model translated across ecological and media theory and practice at the end of the 1960s.